Music therapy: The power of music for health

Music therapy: The power of music for health

The more we learn about the power of music therapy, the more applications we discover for it. Zoe Cormier explains the link between music and health.

Published: October 9, 2018 at 1:00 am

Music is medicinal. You might expect a statement like this to come from someone in a drumming circle, a chanting crystal healer or sleazy record-label executive. But the idea that music can be used to for health and to heal the mind is increasingly grounded in scientific evidence – not theory.

Recent studies show how people coping with Parkinson’s can learn to walk more easily when rhythms assist their gait. Other research suggests autistic children find social interactions become easier when accompanied by music, and that less anaesthetic is required when music is played to spinal surgery patients. Perhaps most astoundingly, premature babies gain weight quicker when they can hear music.

Scientific studies – ranging from investigations of the brain at a cellular level, to psychiatric assessments of schizophrenics, to linguistic scores in stroke patients – are all leading to the same conclusion: music isn’t just a form of entertainment, it is evolutionarily significant. And the more we learn about the impact of music on the brain, the more we understand how it can be employed as a therapeutic intervention.

So much to learn

“I originally trained as a music therapist but when I went into practice 15 years ago, I found that so little formal research had been done on how or why it works,” says Prof Christian Gold of the Grieg Academy Department of Music at the University of Bergen in Norway. Gold studies how music therapy can help people with a wide variety of conditions, ranging from learning disabilities to schizophrenia and dementia. “I had planned to go back into clinical practice after spending a few years in research but 15 years later, I’m still researching. There’s just so much to learn.”

A music practitioner plays for a stroke patient at Florida Hospital Oceanside (© Press Association)
A music practitioner plays for a stroke patient at Florida Hospital Oceanside (© Press Association)

Perhaps the most familiar notion of the power of music is the claim that listening to Mozart is good for your brain. But that only tells half the story. Listening to classical music (or any kind of music, even earworms) does have quantifiable impacts on aspects of cognition, such as visual puzzle solving. However, everything you do – solving puzzles, playing sports, painting landscapes – has an impact on your brain.

But nothing seems to anatomically, chemically and beneficially alter your brain the way music can. The grey matter, which is the outer layer of the brain that contains the synapses – the ends of the neurones where signals are relayed – thickens with musical training. Furthermore, the cerebellum, which is the wrinkly bulb at the back of the brain that’s crucial for balance, movement and motor control, is bigger in pianists.

Neuroscientists have documented many other anatomical changes that come with musical experience but the most profound is thought to be the fact that the corpus callosum – a band of nerve fibres that connect the left and right hemispheres to each other – thickens. No-one is quite sure what helping the two sides of the brain to communicate with each other accomplishes, but 20 years after this discovery, nobody has found anything else that does this.

What’s more, MRI scans and EEG recordings show that playing – or even just listening to – music engages almost every region of the brain. From top to bottom, front to back, every part of the brain is involved in the process. The newest parts of the brain, such as the frontal cortex, which is associated with higher thinking, tune in. Older structures in the middle, such as the hippocampus (crucial for memory formation) and the amygdala (central to fear and emotion), are also stimulated by the sound. As are even older parts of the brain, such as the cerebellum. Even the brainstem, the most prehistoric part, responds to music – but not to spoken language.

As far as we know, nothing engages as many parts of the brain as music, which suggests that it might have played an important role in our evolution.

Lost for words

What came first: language or music? Neuroscientists – including Steven Pinker– once thought that language was the crucial skill on the CV of the human brain and the characteristic that set us apart from other animals. He called music ‘auditory cheesecake’ – meaning that we like structured noises because they exploit the same networks in our brains that are built to process grammar, prosody and other speech patterns.

But not only does music engage parts of the brain that are not stimulated by language, it is possible to be musical and completely non-verbal. Aphasia – the loss of speech comprehension or production – frequently occurs following a stroke and can leave many people unable to speak and thus feeling isolated and depressed. Yet often those who can’t speak can still appreciate and create music. The most famous example of this is the Russian composer Vissarion Shebalin (1902-1963) who developed aphasia after a series of strokes. He couldn’t speak, yet he could still craft entire symphonies, completing his fifth and final one just three months before his death.

Worldwide, 15 million people suffer strokes every year and speech difficulties are one of the most common outcomes. Therapists in the 1940s began developing a technique known as melodic intonation therapy – using melodies and singing to help stroke victims regain speech. The idea made sense; after all, young children learn the alphabet through song and ‘motherese’ – the sing-song language that parents coo to their babies that is found in every culture on Earth.

Neuroscientists theorised in the 1970s that when a stroke damages areas in the left hemisphere of the brain that are crucial for language – in particular, Broca’s area – musical training can cause regions on the undamaged right hemisphere to take on the task of producing speech instead.

Since then countless studies have documented how music can aid speech recovery. The highest profile example of this is probably US congresswoman Gabrielle Giffords. She was shot in the head in 2011 but survived the attempted assassination. She credits music therapy for helping her regain the ability to read, write and speak.

“Although it’s still an open question over what aspects of music are important – rhythmic or melodic – there is growing evidence that melodic intonation therapy can help people with aphasia,” says Dr Teppo Särkämö of the University of Helsinki. Through examining MRI scans of stroke patients he has shown not only that music aids in language recovery, but actually induces visible changes in a variety of brain structures after just six months of treatment.

In 2008, Särkämö found that of 54 stroke patients, those given musical recordings improved in their linguistic capacities to a greater degree than patients given audio books. Music aided language recovery better than language itself.

“One of the things that makes music so interesting is that it’s pleasant but at the same time cognitively demanding,” says Särkämö. “This is one of the few therapeutic interventions we have that is both soothing as well as challenging.”

Research suggests that autistic children find social interaction easier when accompanied by music (© Press Association)
Research suggests that autistic children find social interaction easier when accompanied by music (© Press Association)

Music can also be used to help patients who have never been able to speak in the first place, such as people with Rett syndrome. “Because they don’t tend to speak at all, we struggle to understand what they may be thinking or feeling,” says Gold, whose own research has measured how music stimulates the brainstems of people with Rett syndrome. “This seems to be an important indicator of the effects that music therapy may be having on them – relaxation or excitement.”

Severe impairments such as Rett syndrome are not the only childhood conditions that music therapists target: 12 per cent of clinical work with autistic children in the UK involves music in some way, most commonly in helping them interact with others.

“It makes sense because music is ultimately about social interactions,” says Gold. “In musical communication, if you improvise with somebody, there are subtle adjustments you have to make when you interact with them. Those social exchanges are the most important part of most forms of music therapy.”

Humans are social creatures that require social contact. Few experiences can be more isolating than the impairments of ageing, so it’s not surprising that this is one of the oldest and most established areas of research in music therapy.

Take, for example, the tremors and mobility problems that come with Parkinson’s: “People with disorders that cause tremors tend to fall. Though medication can help with the tremors, there is little that can be done to help them regain the ability to walk,” says Prof Simone Dalla Bella from the University of Montpellier. With metronomes and percussive instruments, he studies how melodic gait therapy can help Parkinson’s sufferers walk more steadily. Similar to the way that soldiers learn to march to a drumbeat, Parkinson’s sufferers can improve their walking with the help of a rhythm.

“The fascinating thing about this therapy is that the benefits are not confined to gait – we also see improvements in things like motor control,” says Dalla Bella. “Patients who are given auditory cue training, for example, can greatly improve in their perception of and ability to produce speech.”

The mechanism by which music helps Parkinson’s patients appears to lie in a region of the brain called the nucleus accumbens. This is the same region that releases dopamine – the neurotransmitter associated with pleasure – in response to chemical stimulants like drugs, or physical stimulants like sex.

Parkinson’s is characterised by an impairment of the connections between a cluster of brain structures called the basal ganglia and other regions due to a lack of dopamine. So it makes sense, says Dalla Bella, that if music can trigger the release of dopamine in that region, it would be helpful.

Musical memories

Of all the afflictions of old age, none could be more isolating than Alzheimer’s: memories are left behind, loved ones are forgotten and whole identities are gradually lost. More than 25 million people in the UK are affected, by knowing somebody who has dementia.

“We don’t have a cure for Alzheimer’s and there is no cure on the horizon: we need to work on ways to make the sufferers’ lives, and the lives of their carers, easier,” says psychologist Dr Victoria Williamson of the University of Sheffield, author of You Are The Music. “Music is not a pill or a vitamin or a cure, but it can provide powerful support, alleviating real symptoms like depression and anxiety. There is no reason not to invest in providing music to as many people living in care homes as possible.”

After spending many years in the lab studying musical memory, Williamson began working with the charity Lost Chord. Lost Chord was set up in 1999 by Helena Muller to provide live music in residential care homes for people with dementia. “People regularly describe the Lost Chord memory cafes as their lifeline. People can revert back to being a couple again rather than carer and person with dementia. The benefits gained by the people with dementia is immeasurable. To observe people who are withdrawn and isolated come out of their shell and engage by singing and dancing is tangible, powerful and emotional for all to see,” says the Alzheimer’s Society.

“The choir at the Lost Chord memory cafe is one of the few things that makes him smile,” says Marion Jones, whose husband has severe Alzheimer’s.

The deep hold that music can have in our memories is perhaps best exemplified at events like the Lost Chord memory cafes. Even when people with advanced-stage dementia can’t remember the names of their children, they can recall lyrics from the songs of their childhood. Recent neurological studies have verified and scrutinised this, with important findings.

“It is important that we work to provide live music to people in care homes, and not simply give them iPods to sedate them,” says Williamson. “Why would an isolating condition be alleviated by an isolating device?”

This brings us back to what music, ultimately, is: a form of social navigation via sound. As it involves so many ancient brain regions, and can be used in so many therapeutic ways, is music something we are ‘hardwired’ for?

“I used to think so – but the more I learn about music, the more I think it’s not something we inherited: I think it is an invention. Yes, our brains are pre-programmed to be able to produce music. But music didn’t make us – we made it,” says Williamson. “We began making music because it fulfilled so many useful purposes: communication, social bonding, teamwork, sexual attraction. It’s a ball we just can’t put down. This is the best invention we ever came up with.”

  • This article was originally published in February 2016.

© Getty Images